Таблица 4.2

Труба	Минимум		Максимум	
	[л/с]	[M³/4]	[л/с]	[M³/4]
12*2.0мм	0.011	0.034	0.021	0.076
16*2.0мм	0.025	0.090	0.048	0.173
17*2.0мм	0.030	0.108	0.060	0.216
20*2.0мм	0.045	0.162	0.085	0.306

Пример:

G1=0.075/(1.163*5)=0.129m3/4

G2=0.177м³/ч G3=0.134м³/ч

4.3 Балансировка системы ВТП

Расчет падения давления в контурах

Суммарное падение давления на контуре $\Delta P_{\Sigma}[\kappa \Pi a]$ складывается из:

- Падения давления в трубе контура △Р_і[кПа], которое зависит от длины трубы, характеристики материала, из которой она сделана, а так же от тепловой нагрузки на контур. Чем больше длина контура и/или тепловая нагрузка, тем больше на нем падение давления.
- Падения давления на клапанах ∆Ркі[кПа], с помощью которых контур присоединен к коллектору ВТП. Чем больше открыт клапан, тем меньше падение давления, чем больше закрыт – тем больше падение.
- 3. Локальных (местных) падений давления. Например, на стыках труб, соединительных фитингах и т.п. Поэтому, рекомендуется укладывать трубы теплого пола без стыков, единым контуром от начала до конца.

Падение давления на каждом элементе системы Δ P[бар] находится из эмпирического уравнения применяемого во всех гидравлических системах:

$$\Delta P = (G/K_V)^{1.78*}N [foap]$$
 (4.12)

где:

G[м3/ч] – расход теплоносителя через рассчитываемый элемент

 K_v [м3/ч] – характеристика элемента системы, которая означает расход теплоносителя через этот элемент при падении давления на нем 1бар или 100кПа

N – количество подобных элементов

Расчет падения давления в конурах ΔР_і[кПа] (по длине трубы) осуществляется по формуле вытекающей из уравнения (4.12):

$$\Delta P_i = (G_i/K_V)^{1.78*}L_i^*100 [\kappa\Pi a]$$
 (4.13)

где:

G_і[м³/ч] – расчетный расход теплоносителя через n-ый контур

L_і[м] – длинна n-ого контура

 K_V [м³/час] – характеристика труб PE-RT, зависящая от диаметра (см. таблицу 4.3)

Таблица 4.3

таолица т.о
К _∨ [м3/ч]
1.3
6.4
7.2
10.3
22.1
43.9

Таким образом, рассчитываются падения давления на каждом из контуров нагреваемой панели.

Пример:

По формуле 4.13 определим падение давления для трубы 17*2.0мм в соответствии с длиной каждого контура системы, проектируемой в нашем примере:

 $\Delta P_1 = (G_1/K_V)^{1.78*}L_1*100 = (0.129/7.2)^{1.78*}63*100 = 4.9\kappa\Pi a$

 $\Delta P_2 = 9.3 \kappa \Pi a$ $\Delta P_3 = 6.8 \kappa \Pi a$

ОГРАНИЧЕНИЯ:

Максимально допустимое падение давления на одном контуре рекомендуется не более 11 кПа. При превышении значения высока вероятность того, что не удастся сбалансировать (см. ниже) между собой контура, подключенные к одному коллектору, и/или возникнут кавитационные шумы, и/или потребуется слишком мощный циркуляционный насос.

Если после предварительных расчетов падение давления на контуре превысило этот показатель,

