

Расчет узла оконного откоса в программном комплексе НЕАТ

20.18-49-2018-10-TY

Технический специалист:

Руководитель подразделения:

Заброда Р.А. Жит

Шелестов А. В.

Содержание

1.	Введение	3
2.	Расчетные условия	3
3.	Условия моделирования стационарных расчетов в программе НЕАТ	4
	3.1. Характеристики материалов	4
	3.2 Поверхностные сопротивления	
	3.3 Расчетная наружная температура	4
	3.4 Критерии расчета	4
4.	Результаты расчета	5
5.	Графическое представление результатов расчета	6
	лисок используемой литературы	

1. Введение

В отчете определены минимальные температуры на внутренних поверхностях и узлах примыканий ограждающих конструкций, с целью выполнения санитарногигиенических требований.

Согласно п. 5.7 СП 50.13330.2012 температура внутренней поверхности - t_в, °C, ограждающей конструкции (за исключением вертикальных светопрозрачных конструкций, т.е. с углом наклона к горизонту 45° и более) в зоне теплопроводных включений, в углах и оконных откосах должна быть не ниже точки росы - t_{точки росы}, °C, внутреннего воздуха при расчетной температуре наружного воздуха - t_н, °C, принимаемой в соответствии с пояснениями к формуле (5.4).

Температура внутренней поверхности ограждающей конструкции должна определяться по результатам расчета температурных полей всех зон с теплотехнической неоднородностью или по результатам испытаний в климатической камере в аккредитованной лаборатории.

2. Расчетные условия

Расчетные условия для моделирования в программе НЕАТ, представлены в таблице 1.

Таблица 1.

№ п.п.	Наименование расчетных параметров	Обозначение параметра	Ед. изм.	Расчетное значение
1	Расчетная температура наружного воздуха для г. Москва	t _H	°C	-25
2	Расчетная температура внутреннего воздуха	$t_{\!\scriptscriptstyle \mathcal{B}}$	°C	+20
3	Температура точки росы при +20 °C и относительной влажности 55 %	t точки росы	°C	+10,69
4	Коэффициент теплоотдачи наружной поверхности ограждающей конструкции	αн	Вт/(м²*°С)	23
5	Коэффициент теплоотдачи внутренней поверхности ограждающей конструкции	αв	Вт/(м²*°С)	8,7

3. Условия моделирования стационарных расчетов в программе НЕАТ

3.1. Характеристики материалов

Материалы, используемые в расчете представлены в таблице 2.

Таблица 2.

Nº	Материал слоя	Теплопроводность λ _Б , Вт/ (м°С)
1	Пенобетон / Газобетон	0,37
2	Рама	0,15
3	ТЕХНОПЛЕКС FAS	0,034
4	Монтажная пена	0,034

3.2 Поверхностные сопротивления

Поверхностные сопротивления к внутренним и к наружным поверхностям ограждающих конструкций, принимаются согласно СП 50.13330.2012.

3.3 Расчетная наружная температура

За расчетную температуру наружного воздуха принималось температура воздуха наиболее холодной пятидневки, с обеспеченностью 0,92.

Значения температур взяты из СП 131.13330.2012 Строительная климатология.

3.4 Критерии расчета

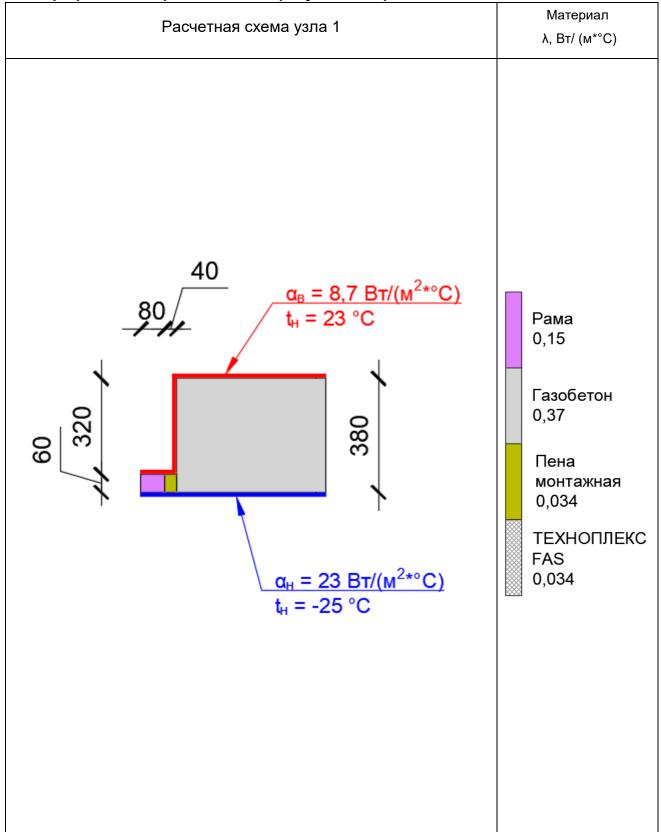
Рассчитываемая конструкция удовлетворяет санитарно- гигиеническим требованиям, если температура внутренней поверхности — t_B , °C, ограждающей конструкции в зоне теплопроводных включений, в углах и оконных откосах, а также зенитных фонарей выше, либо равна температуре точки росы — $t_{\text{точки росы, °C}}$.

4. Результаты расчета.

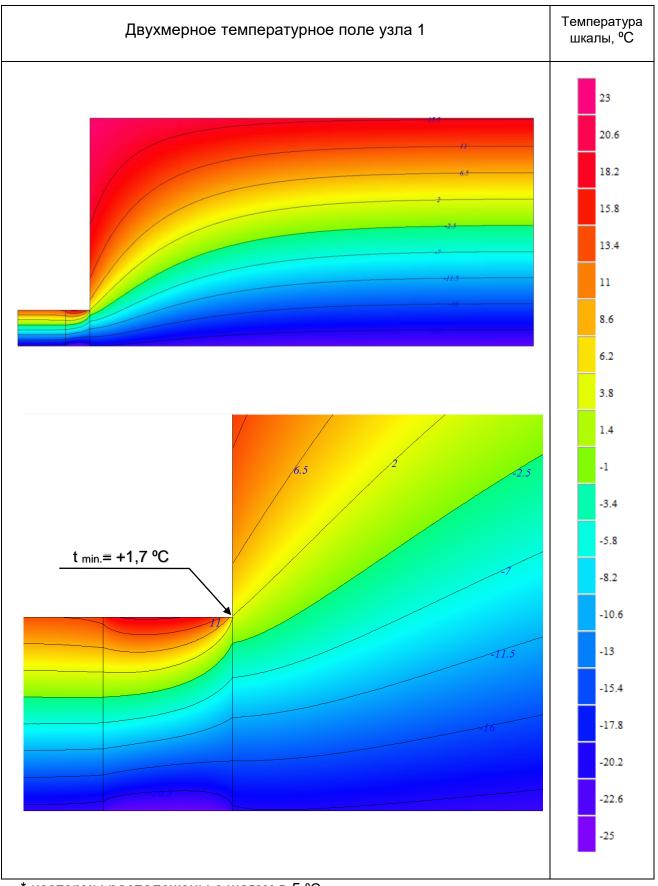
Результаты расчетов сведены в таблицу 3.

Таблица 3

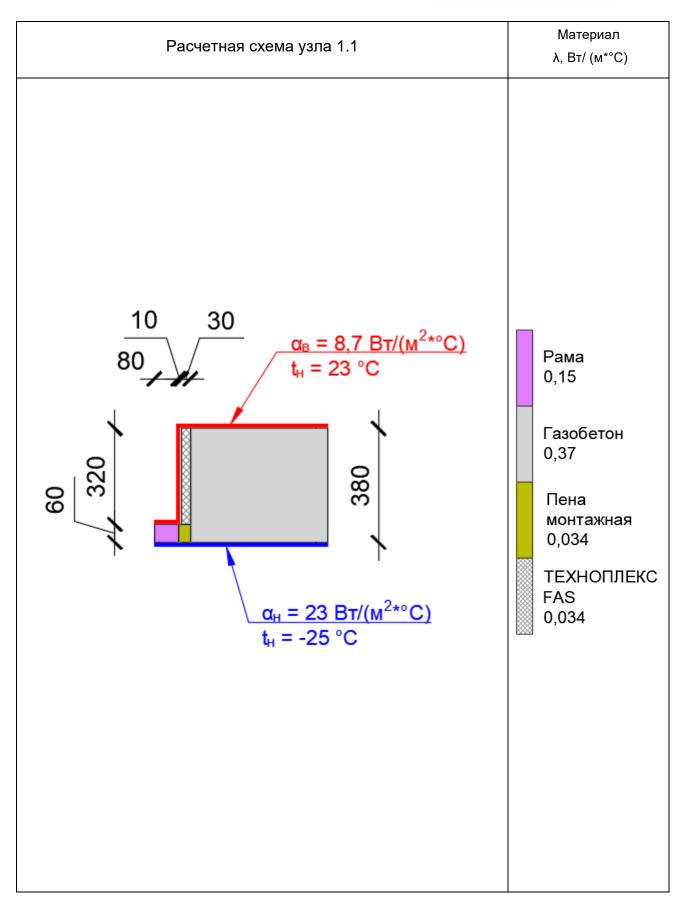
Nº	Наименование узла	Минимальная температура в узле, °С
1	Узел 1	+1,7
2	Узел 1.1	+11,2

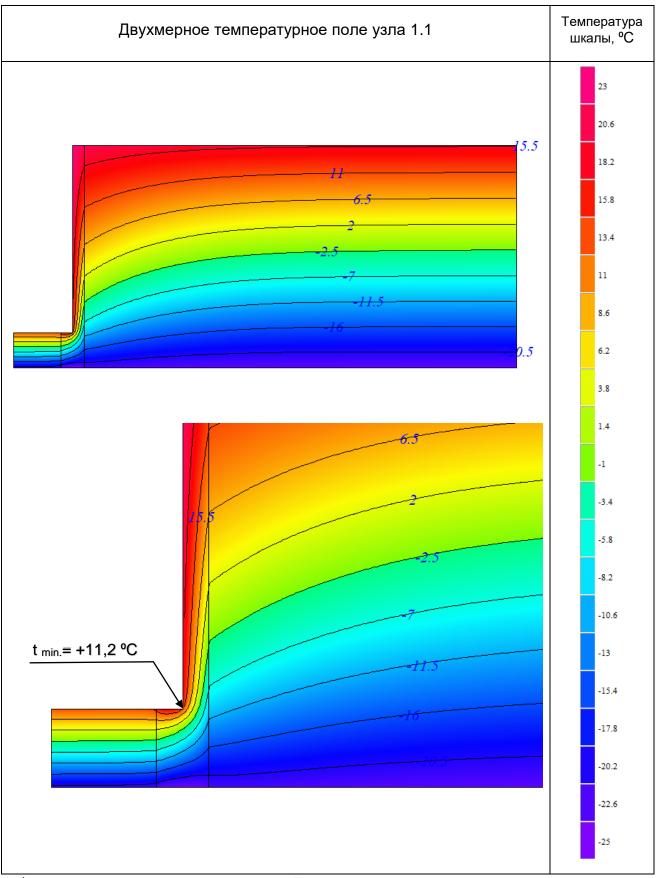

Вывод: Температура на внутренней поверхности ограждающей конструкции в узле 1 ниже температуры точки росы. Рассчитываемый узел не отвечают санитарногигиеническим требованиям.

Тепловой поток через узел 1 составляет 44,824 Вт/м, через узел 1.1 – 39,186 Вт/м


Рассчитываемая конструкция в узле 1.1 с использованием утеплителя XPS ТЕХНОПЛЕКС FAS удовлетворяет санитарно-гигиеническим требованиям. Расчет показывает, что утепление откосов является необходимым мероприятием.

5. Графическое представление результатов расчета





^{*} изотермы расположены с шагом в 5 °С

^{*} изотермы расположены с шагом в 5 °C

Список используемой литературы

- 1. СП 50.13330.2012 Тепловая защита зданий. Актуализированная редакция СНиП 23-02-2003.
- 2. СП 131.13330.2012 Строительная климатология. Актуализированная редакция СНиП 23-01-99*.