Перейти до публікації
Пошук в
  • Додатково...
Шукати результати, які містять...
Шукати результати в...

Александр. Киев

Пользователи
  • Публікації

    967
  • Зареєстрований

  • Відвідування

Усі публікації користувача Александр. Киев

  1. ГИДРОФОБИЗИРУЮЩАЯ ЖИДКОСТЬ 136-157 М - не является гидроизоляцией.
  2. Да простят меня модераторы за два одинаковых поста в разных темах. Из соседского форума "Кочевник" пишет: - Чтобы грамотно сложить "пирог", для начала неплохо понять физику процесса. А вопрос по точке росы/пароизоляции/утеплителю походу, самый популярный на этом форуме. Почитайте внимательно то, что написано ниже, и каждый найдет нужную ему информацию. По затронутому здесь вопросу - я выделил фрагмент. "РАЗДЕЛ III. КОНДЕНСАЦИЯ ВОДЯНОГО ПАРА В СТРОИТЕЛЬНЫХ КОНСТРУКЦИЯХ И МЕТОДЫ БОРЬБЫ С НЕЙ Осуществляя тепловую защиту ограждающих конструкций, следует помнить, что коэффициенты теплопроводности проницаемых утеплителей (минплиты, стекловата и др.), которые приведены в справочной и рекламной литературе, измеряются в условиях, далеких от реальных эксплуатационных. В реальности перенос тепла воздухом, проходящим через утеплитель, увлажняет его внутреннюю структуру, катастрофически снижая теплозащитные свойства, И если в потолочных перекрытиях снизить влажность можно хорошей вентиляцией и пароизоляцией, то на стенах сделать это гораздо сложнее. Полностью избежать увлажнения стен дома практически невозможно, поэтому нужно максимально снизить количество источников влаги и обеспечить ее отвод в сторону улицы. ИСТОЧНИКИ ВЛАГИ Влага попадает в конструкции здания в процессе строительства, из внешних источников природного происхождения, а также в результате жизнедеятельности человека. Увлажненные конструкции теряют свои эксплуатационные и теплоизоляционные свойства, преждевременно разрушаются, снижая срок службы здания и нарушая микроклимат в помещениях. Внутрь здания испаряется большая часть воды из бетона, раствора штукатурки, красок и т.п. Внесенная в конструкцию вода должна быть испарена до начала эксплуатации здания. Здания, сооружаемые весной и летом, не должны закрываться, пока большая часть влаги не испарится. Здания, которые сооружаются в зимний период, насыщаются влагой гораздо сильнее. Особенно интенсивно происходит процесс насыщения строительных конструкций влагой, когда оконные и дверные проемы закрываются для за щиты рабочих от сквозняков. Влага, внесенная при строительстве, обычно испаряется в течение одного года. Это правило справедливо для тех конструкций, вентиляция которых происходит на должном уровне. Если вентиляция плохая или совсем отсутствует, то испарение влаги из конструкций может происходить более года. В невентилируемых конструкциях в процессе эксплуатации здания влага не только не испаряется, а даже накапливается со временем. Проникновение влаги в конструктивные элемент здания от внешних источников происходит несколькими путями. Во-первых, при отсутствии или некачественно выполненной гидроизоляции фундаментов и стен. Во-вторых, стены могут подвергаться воздействию атмосферной влаги. Косые дожди и вода, стекающая с крыши дома, увлажняют стены и снижают эффективность их тепловой изоляции. Бороться с этим явлением помогает создание в верхней части стены карнизов и стропильных свесов, которые выступают за плоскость стены на расстояние 30-40 см. Карнизы строят в процессе возведения стен, укладывая последние ряды кирпичной кладки с напуском за плоскость стены. Из архитектурных соображений карнизы могут принимать различную форму, но в любом случае их функциональной нагрузкой должна быть защита стены от атмосферной влаги. Причиной сырости наружных стен могут быть плохо заполненные швы кирпичной кладки, в которые затекает вода. Вода легко проникает в любые поры и щели, свободно проходит через пористые бетонные камни. Поэтому защитить стену от переувлажнения дождем может тщательная отделка ее наружной поверхности. Внутренняя поверхность кирпичной стенки не промокнет даже после двухнедельного проливного дождя, если ее наружная сторона выполнена из обожженного кирпича с хорошо заполненными швами. В процессе эксплуатации здания влага появляется в результате жизнедеятельности человека. Кроме того, влага испаряется в невентилируемых подвальных помещениях, с поверхностей грунта, не покрытого водонепроницаемым материалом и т.п. Возможность конденсации пара из воздуха определяется порядком взаимного расположения материалов в наружных ограждающих конструкциях. В многослойных конструкциях обычно применяются материалы, которые существенно отличаются по паропроницаемости и водопоглощению. При одних и тех же климатически условиях в результате одного расположения слоев материалов конденсация пара может происходить, а при другом — ее не будет. Влага поступает в конструкцию в виде пара, которые может проникать через многие материалы, включая и те которые считаются непроницаемыми для воздуха и вод в жидком виде. Перепад температуры воздуха внутри и снаружи здания вызывает перепад парциального давления и, как следствие, — диффузию водяного пара через ограждающую конструкцию. Пары воды всегда имеются в воздухе. Известное количество этих паров необходимо для поддержания жизнедеятельности и комфорта. Когда пар попадает на достаточно холодную поверхность, он конденсируется, с чем и связаны многие проблемы надежной теплозащиты зданий. При конденсации тепло пара передается холодной поверхности и с этим связаны тепловые потери. Существует шесть "правил" предохранения проектируемого здания от недопустимой степени конденсации, которые можно применять в различных сочетаниях: - устранение источников лишней влаги. Обычно это достигается устройством дренажа, вентиляции или изоляцией выделяющих влагу источников; - недопущение попадания влажного воздуха на холодные поверхности. Для этого используют парозащитные барьеры (пароизоляция, выполняемая из паронепроницаемых материалов), не позволяющие влажному воздуху из помещения проникать к холодным поверхностям внутри стен, потолка, пола, покрытия; - обеспечение температуры внутренней поверхности выше точки росы, применяя теплоизоляцию с холодной стороны; - обеспечение возможности водяному пару выходить с холодной стороны ограждения наружу через паропроницаемый материал или через вентиляционные отверстия в наружной обшивке; - устранение возможности задержки пара между двумя слоями материала, представляющими сопротивление паропроницанию; - применение материалов, временно абсорбирующих конденсат. При этом обязательно интенсивное омывание воздухом внутренних поверхностей наружных ограждений для ускорения испарения поглощенной влаги. ПАРОИЗОЛЯЦИЯ Давление водяного пара внутри жилого помещения почти всегда (независимо от давления воздуха) больше чем снаружи. Поэтому пар движется через ограждающую конструкцию путем диффузии в сторону меньшего давления снаружи. Если в какой-либо зоне ограждающей конструкции температура опускается до точки росы (температура насыщения водяного пара), то происходит выпадение конденсата. Процесс появления влаги и накопления ее в конструкциях относится к вредным явлениям, с которыми следует бороться. Пароизоляция конструкций выполняется из таких материалов, чтобы паропроницаемость слоя была меньше 0,03 г/м2,ч.мм рт.ст. Пароизоляционный слой обычно применяется в теплоизолированных конструкциях. Теплоизоляция в конструкциях приводит к тому, что материал с внутренней стороны становится теплее, а материал с наружной стороны конструкции — холоднее, чем это было бы в неизолированной конструкции. Следовательно, зимой теплоизолированная конструкция может усилить конденсацию и вызвать увлажнение материалов ограждающей конструкции. Пароизоляция служит для устранения конденсации зимой, а летом не позволяет пару снаружи проникнуть внутрь помещения, в котором установлен кондиционер. Таким образом, пароизоляция позволит поддерживать более комфортные условия в помещении не только зимой, но и летом. Поэтому в отапливаемых зимой и кондиционированных летом помещениях рекомендуют применять пароизоляцию, которую следует располагать по внутренней отделке или сразу за ней. В зданиях из малопроницаемых материалов с наружной стороны ограждений паропроницаемость пароизоляции на теплой стороне должна быть, по меньшей мере, в 5 раз меньше, чем у любого слоя холодной стороны. Если это условие выполнить невозможно, необходимо предусмотреть вентиляцию конструкции с холодной стороны. В многослойных ограждающих конструкциях слой, имеющий малую паропроницаемость, может выступать в качестве паробарьера, и это обстоятельство следует учитывать при проектировании зданий или их тепловой защиты. Пароизоляционные слои в стенах, перекрытиях, покрытиях необходимо выполнять тщательно, чтобы обеспечить непрерывность защиты. Отверстия для выхода труб и т.п. герметизируют мастиками. МЕТОДЫ ВЕНТИЛИРОВАНИЯ СТЕНОВЫХ КОНСТРУКЦИЙ Исследования показали, что водяной пар, свободно движущийся через пористый материал, не конденсируется даже проходя зону температур, которая соответствует его точке росы. Если же конденсация и происходит, то она сопровождается мгновенным испарением влаги без увлажнения конструкций. Когда же пар достигает поверхности, которая препятствует его свободному течению или тормозит его, происходит конденсация при соответствующих температурных условиях. В строительной практике имеется два конструктивных решения указанной проблемы. Первое решение заключается в применении в ограждающей конструкции паропроницаемых материалов на холодной от пароизоляции стороне. И, наоборот, везде, где только позволяют проектируемые условия, следует избегать применения материалов с большим сопротивлением паропроницанию с холодной стороны. К наружным паропроницаемым отделкам относятся все виды штукатурок, кирпичная облицовка, дощатые обшивки и т.п. Второе конструктивное решение состоит в устройстве воздушных каналов, через которые из ограждающих конструкций удаляется пар. Этот метод позволяет применять для наружной облицовки практически непроницаемые материалы: керамическую плитку, металл, стекло и т.п. Для использования естественной тяги, которая усиливается от нагрева солнцем, воздушные каналы должны быть направлены вертикально. Проектируя такие стены, следует побеспокоиться о герметичности воздушных каналов, так как от этого зависят естественная тяга и эффективность воздушного охлаждения. Кроме того, негерметичность каналов может привести к накоплению в них влаги. Это же явление может наблюдаться и при использовании в ограждающих конструкциях полых материалов. При отрицательных температурах замерзшая вода может разрушить элемент ограждающей конструкции. Чтобы в стенах с воздушной прослойкой не происходило такого явления, для выхода пара и его дренажа предусматривают отверстия вверху и внизу облицовки. УТЕПЛЕНИЕ ЦОКОЛЬНОГО ПЕРЕКРЫТИЯ В соответствии со СНиП II-3-79* "Строительная теплотехника" (выпуск 1998 года) требуемое приведенное сопротивление теплопередаче цокольных перекрытий для Москвы и Подмосковья должно составлять не менее R0 = 4,15 м2 °С/Вт. При утеплении перекрытий над холодными подвалами и подпольями следует учитывать, что через них, как и через все ограждающие конструкции, разделяющие зоны теплого и холодного воздуха, происходит диффузия водяных паров. Для защиты утеплителя от увлажнения его необходимо изолировать слоем пароизоляционного материала, но в отличие от чердачных перекрытий пароизоляция располагается над утеплителем (а не под ним), т.к. водяные пары диффундируют из теплых (верхних) помещений в более холодные (нижние). Чтобы предотвратить увлажнение утеплителя перекрытий и избежать появления сырости, грибка и плесени, необходимо обеспечить вентиляцию подполья и подвалов. С этой целью устраиваются специальные отверстиям продухи, через которые водяные пары будут удаляться наружу с вентиляционным воздухом Температура пола должна быть не более чем на 2°С ниже температуры воздуха в помещении, так как длительный контакт стоп с холодной поверхностью пола способен вызвать общее переохлаждение организма, что, в свою очередь, способствует развитию различных простудных заболеваний. Поддерживать температуру пола, отвечающую гигиеническим нормативам, можно лишь при хорошей теплоизоляции. В связи с этим при строительстве или ремонте коттеджа необходимо обратить особое внимание на теплоизоляцию перекрытия первого этажа и проследить, чтобы его теплозащитные характеристики были достаточно высокими. При утеплении плитных цокольных перекрытий теплоизоляцию укладывают на несущие плиты, располагая ее между лагами, установленными на железобетонную плиту через прокладки из рубероида, гидроизола или из другого гидроизоляционного материала. Толщина утеплителя определяется в зависимости от теплозащитных свойств по коэффициенту теплопроводности материала. Поверх утеплителя размещают пароизоляционный слой, который препятствует увлажнению теплоизоляции водяными парами внутреннего воздуха. Полотнища пароизоляционного материала раскатывают с перехлестом не менее 100 мм. Для обеспечения герметичности швов их проклеивают специальной лентой или скотчем. Фольгированные пароизоляционные материалы устанавливают блестящей поверхностью в сторону теплого помещения. В этом случае между пароизоляцией и основанием пола нужно предусмотреть небольшую воздушную прослойку. Для вентиляции подвала устраивают отверстия размером 100x100 — 150x150 мм, располагая их по периметру цокольной части здания через каждые 4-5 м. Влага будет иметь возможность испаряться наружу, и в подвале не появятся плесень и запах сырости. При утеплении цокольных перекрытий по деревянным балкам теплоизоляцию укладывают на доски или на деревянные щиты, опирающиеся на черепные бруски. С "теплой" стороны утеплитель защищают пароизоляционным материалом. Концы деревянных балок (120-180 мм), опирающиеся на цоколь, обертывают рубероидом, полиэтиленовой пленкой или другим гидроизоляционным материалом, а торцы балок оставляют открытыми. Крайнюю балку, параллельную наружной стене, укладывают не вплотную к поверхности стены."
  3. На дружественном форуме форумчанин "Кочевник" два года назад написал следующее: Чтобы грамотно сложить "пирог", для начала неплохо понять физику процесса. А вопрос по точке росы/пароизоляции/утеплителю походу, самый популярный на этом форуме. Почитайте внимательно то, что написано ниже, и каждый найдет нужную ему информацию. По затронутому здесь вопросу - я выделил фрагмент. "РАЗДЕЛ III. КОНДЕНСАЦИЯ ВОДЯНОГО ПАРА В СТРОИТЕЛЬНЫХ КОНСТРУКЦИЯХ И МЕТОДЫ БОРЬБЫ С НЕЙ Осуществляя тепловую защиту ограждающих конструкций, следует помнить, что коэффициенты теплопроводности проницаемых утеплителей (минплиты, стекловата и др.), которые приведены в справочной и рекламной литературе, измеряются в условиях, далеких от реальных эксплуатационных. В реальности перенос тепла воздухом, проходящим через утеплитель, увлажняет его внутреннюю структуру, катастрофически снижая теплозащитные свойства, И если в потолочных перекрытиях снизить влажность можно хорошей вентиляцией и пароизоляцией, то на стенах сделать это гораздо сложнее. Полностью избежать увлажнения стен дома практически невозможно, поэтому нужно максимально снизить количество источников влаги и обеспечить ее отвод в сторону улицы. ИСТОЧНИКИ ВЛАГИ Влага попадает в конструкции здания в процессе строительства, из внешних источников природного происхождения, а также в результате жизнедеятельности человека. Увлажненные конструкции теряют свои эксплуатационные и теплоизоляционные свойства, преждевременно разрушаются, снижая срок службы здания и нарушая микроклимат в помещениях. Внутрь здания испаряется большая часть воды из бетона, раствора штукатурки, красок и т.п. Внесенная в конструкцию вода должна быть испарена до начала эксплуатации здания. Здания, сооружаемые весной и летом, не должны закрываться, пока большая часть влаги не испарится. Здания, которые сооружаются в зимний период, насыщаются влагой гораздо сильнее. Особенно интенсивно происходит процесс насыщения строительных конструкций влагой, когда оконные и дверные проемы закрываются для за щиты рабочих от сквозняков. Влага, внесенная при строительстве, обычно испаряется в течение одного года. Это правило справедливо для тех конструкций, вентиляция которых происходит на должном уровне. Если вентиляция плохая или совсем отсутствует, то испарение влаги из конструкций может происходить более года. В невентилируемых конструкциях в процессе эксплуатации здания влага не только не испаряется, а даже накапливается со временем. Проникновение влаги в конструктивные элемент здания от внешних источников происходит несколькими путями. Во-первых, при отсутствии или некачественно выполненной гидроизоляции фундаментов и стен. Во-вторых, стены могут подвергаться воздействию атмосферной влаги. Косые дожди и вода, стекающая с крыши дома, увлажняют стены и снижают эффективность их тепловой изоляции. Бороться с этим явлением помогает создание в верхней части стены карнизов и стропильных свесов, которые выступают за плоскость стены на расстояние 30-40 см. Карнизы строят в процессе возведения стен, укладывая последние ряды кирпичной кладки с напуском за плоскость стены. Из архитектурных соображений карнизы могут принимать различную форму, но в любом случае их функциональной нагрузкой должна быть защита стены от атмосферной влаги. Причиной сырости наружных стен могут быть плохо заполненные швы кирпичной кладки, в которые затекает вода. Вода легко проникает в любые поры и щели, свободно проходит через пористые бетонные камни. Поэтому защитить стену от переувлажнения дождем может тщательная отделка ее наружной поверхности. Внутренняя поверхность кирпичной стенки не промокнет даже после двухнедельного проливного дождя, если ее наружная сторона выполнена из обожженного кирпича с хорошо заполненными швами. В процессе эксплуатации здания влага появляется в результате жизнедеятельности человека. Кроме того, влага испаряется в невентилируемых подвальных помещениях, с поверхностей грунта, не покрытого водонепроницаемым материалом и т.п. Возможность конденсации пара из воздуха определяется порядком взаимного расположения материалов в наружных ограждающих конструкциях. В многослойных конструкциях обычно применяются материалы, которые существенно отличаются по паропроницаемости и водопоглощению. При одних и тех же климатически условиях в результате одного расположения слоев материалов конденсация пара может происходить, а при другом — ее не будет. Влага поступает в конструкцию в виде пара, которые может проникать через многие материалы, включая и те которые считаются непроницаемыми для воздуха и вод в жидком виде. Перепад температуры воздуха внутри и снаружи здания вызывает перепад парциального давления и, как следствие, — диффузию водяного пара через ограждающую конструкцию. Пары воды всегда имеются в воздухе. Известное количество этих паров необходимо для поддержания жизнедеятельности и комфорта. Когда пар попадает на достаточно холодную поверхность, он конденсируется, с чем и связаны многие проблемы надежной теплозащиты зданий. При конденсации тепло пара передается холодной поверхности и с этим связаны тепловые потери. Существует шесть "правил" предохранения проектируемого здания от недопустимой степени конденсации, которые можно применять в различных сочетаниях: - устранение источников лишней влаги. Обычно это достигается устройством дренажа, вентиляции или изоляцией выделяющих влагу источников; - недопущение попадания влажного воздуха на холодные поверхности. Для этого используют парозащитные барьеры (пароизоляция, выполняемая из паронепроницаемых материалов), не позволяющие влажному воздуху из помещения проникать к холодным поверхностям внутри стен, потолка, пола, покрытия; - обеспечение температуры внутренней поверхности выше точки росы, применяя теплоизоляцию с холодной стороны; - обеспечение возможности водяному пару выходить с холодной стороны ограждения наружу через паропроницаемый материал или через вентиляционные отверстия в наружной обшивке; - устранение возможности задержки пара между двумя слоями материала, представляющими сопротивление паропроницанию; - применение материалов, временно абсорбирующих конденсат. При этом обязательно интенсивное омывание воздухом внутренних поверхностей наружных ограждений для ускорения испарения поглощенной влаги. ПАРОИЗОЛЯЦИЯ Давление водяного пара внутри жилого помещения почти всегда (независимо от давления воздуха) больше чем снаружи. Поэтому пар движется через ограждающую конструкцию путем диффузии в сторону меньшего давления снаружи. Если в какой-либо зоне ограждающей конструкции температура опускается до точки росы (температура насыщения водяного пара), то происходит выпадение конденсата. Процесс появления влаги и накопления ее в конструкциях относится к вредным явлениям, с которыми следует бороться. Пароизоляция конструкций выполняется из таких материалов, чтобы паропроницаемость слоя была меньше 0,03 г/м2,ч.мм рт.ст. Пароизоляционный слой обычно применяется в теплоизолированных конструкциях. Теплоизоляция в конструкциях приводит к тому, что материал с внутренней стороны становится теплее, а материал с наружной стороны конструкции — холоднее, чем это было бы в неизолированной конструкции. Следовательно, зимой теплоизолированная конструкция может усилить конденсацию и вызвать увлажнение материалов ограждающей конструкции. Пароизоляция служит для устранения конденсации зимой, а летом не позволяет пару снаружи проникнуть внутрь помещения, в котором установлен кондиционер. Таким образом, пароизоляция позволит поддерживать более комфортные условия в помещении не только зимой, но и летом. Поэтому в отапливаемых зимой и кондиционированных летом помещениях рекомендуют применять пароизоляцию, которую следует располагать по внутренней отделке или сразу за ней. В зданиях из малопроницаемых материалов с наружной стороны ограждений паропроницаемость пароизоляции на теплой стороне должна быть, по меньшей мере, в 5 раз меньше, чем у любого слоя холодной стороны. Если это условие выполнить невозможно, необходимо предусмотреть вентиляцию конструкции с холодной стороны. В многослойных ограждающих конструкциях слой, имеющий малую паропроницаемость, может выступать в качестве паробарьера, и это обстоятельство следует учитывать при проектировании зданий или их тепловой защиты. Пароизоляционные слои в стенах, перекрытиях, покрытиях необходимо выполнять тщательно, чтобы обеспечить непрерывность защиты. Отверстия для выхода труб и т.п. герметизируют мастиками. МЕТОДЫ ВЕНТИЛИРОВАНИЯ СТЕНОВЫХ КОНСТРУКЦИЙ Исследования показали, что водяной пар, свободно движущийся через пористый материал, не конденсируется даже проходя зону температур, которая соответствует его точке росы. Если же конденсация и происходит, то она сопровождается мгновенным испарением влаги без увлажнения конструкций. Когда же пар достигает поверхности, которая препятствует его свободному течению или тормозит его, происходит конденсация при соответствующих температурных условиях. В строительной практике имеется два конструктивных решения указанной проблемы. Первое решение заключается в применении в ограждающей конструкции паропроницаемых материалов на холодной от пароизоляции стороне. И, наоборот, везде, где только позволяют проектируемые условия, следует избегать применения материалов с большим сопротивлением паропроницанию с холодной стороны. К наружным паропроницаемым отделкам относятся все виды штукатурок, кирпичная облицовка, дощатые обшивки и т.п. Второе конструктивное решение состоит в устройстве воздушных каналов, через которые из ограждающих конструкций удаляется пар. Этот метод позволяет применять для наружной облицовки практически непроницаемые материалы: керамическую плитку, металл, стекло и т.п. Для использования естественной тяги, которая усиливается от нагрева солнцем, воздушные каналы должны быть направлены вертикально. Проектируя такие стены, следует побеспокоиться о герметичности воздушных каналов, так как от этого зависят естественная тяга и эффективность воздушного охлаждения. Кроме того, негерметичность каналов может привести к накоплению в них влаги. Это же явление может наблюдаться и при использовании в ограждающих конструкциях полых материалов. При отрицательных температурах замерзшая вода может разрушить элемент ограждающей конструкции. Чтобы в стенах с воздушной прослойкой не происходило такого явления, для выхода пара и его дренажа предусматривают отверстия вверху и внизу облицовки. УТЕПЛЕНИЕ ЦОКОЛЬНОГО ПЕРЕКРЫТИЯ В соответствии со СНиП II-3-79* "Строительная теплотехника" (выпуск 1998 года) требуемое приведенное сопротивление теплопередаче цокольных перекрытий для Москвы и Подмосковья должно составлять не менее R0 = 4,15 м2 °С/Вт. При утеплении перекрытий над холодными подвалами и подпольями следует учитывать, что через них, как и через все ограждающие конструкции, разделяющие зоны теплого и холодного воздуха, происходит диффузия водяных паров. Для защиты утеплителя от увлажнения его необходимо изолировать слоем пароизоляционного материала, но в отличие от чердачных перекрытий пароизоляция располагается над утеплителем (а не под ним), т.к. водяные пары диффундируют из теплых (верхних) помещений в более холодные (нижние). Чтобы предотвратить увлажнение утеплителя перекрытий и избежать появления сырости, грибка и плесени, необходимо обеспечить вентиляцию подполья и подвалов. С этой целью устраиваются специальные отверстиям продухи, через которые водяные пары будут удаляться наружу с вентиляционным воздухом Температура пола должна быть не более чем на 2°С ниже температуры воздуха в помещении, так как длительный контакт стоп с холодной поверхностью пола способен вызвать общее переохлаждение организма, что, в свою очередь, способствует развитию различных простудных заболеваний. Поддерживать температуру пола, отвечающую гигиеническим нормативам, можно лишь при хорошей теплоизоляции. В связи с этим при строительстве или ремонте коттеджа необходимо обратить особое внимание на теплоизоляцию перекрытия первого этажа и проследить, чтобы его теплозащитные характеристики были достаточно высокими. При утеплении плитных цокольных перекрытий теплоизоляцию укладывают на несущие плиты, располагая ее между лагами, установленными на железобетонную плиту через прокладки из рубероида, гидроизола или из другого гидроизоляционного материала. Толщина утеплителя определяется в зависимости от теплозащитных свойств по коэффициенту теплопроводности материала. Поверх утеплителя размещают пароизоляционный слой, который препятствует увлажнению теплоизоляции водяными парами внутреннего воздуха. Полотнища пароизоляционного материала раскатывают с перехлестом не менее 100 мм. Для обеспечения герметичности швов их проклеивают специальной лентой или скотчем. Фольгированные пароизоляционные материалы устанавливают блестящей поверхностью в сторону теплого помещения. В этом случае между пароизоляцией и основанием пола нужно предусмотреть небольшую воздушную прослойку. Для вентиляции подвала устраивают отверстия размером 100x100 — 150x150 мм, располагая их по периметру цокольной части здания через каждые 4-5 м. Влага будет иметь возможность испаряться наружу, и в подвале не появятся плесень и запах сырости. При утеплении цокольных перекрытий по деревянным балкам теплоизоляцию укладывают на доски или на деревянные щиты, опирающиеся на черепные бруски. С "теплой" стороны утеплитель защищают пароизоляционным материалом. Концы деревянных балок (120-180 мм), опирающиеся на цоколь, обертывают рубероидом, полиэтиленовой пленкой или другим гидроизоляционным материалом, а торцы балок оставляют открытыми. Крайнюю балку, параллельную наружной стене, укладывают не вплотную к поверхности стены."
  4. ПЕНОПОЛИУРЕТАН - ищите поиском, читайте. В Вашем случае отличный вариант! Заливаете в воздушную прослойку и готово. Поскольку воздушная прослойка всего пять сантиметров плотность пены необходимо рассчитать для получения приемлемой теплопроводности. Слабое место этого материала горючесть , но у Вас он закрыт не горючими материалами, так что преград нет.
  5. Нет, не все... Вернее уже совсем скоро появится материал (панели 600х300х80) на основе перлита. Сейчас проводится сертификация. Для справки: каркас ЛСТК зашитый с двух сторон панелями, модель прожигалась в течении 2,5 часов температурой 1200 градусов. В результате температура металла не достигла отметки 90 градусов, а температура наружных панелей не изменилась вообще. Вот такие пирожки.
  6. Нигде. Все правильно. А, что Вас смущает? Ожидать, что самостоятельно изготовленный бетон будет кардинально дешевле заводского просто наивно. Игорь Вы согласны?
  7. Маловато информации о водных потоках. Если ожидаемая вода внушает опасения, то в дополнение к предлагаемой трубе желательно по бокам насыпи разместить габионы с гранитом (хотя бы в один ряд на высоту 40-60см), а выше уже использовать на склонах георешетку засыпанную песком или грунтом. Такой конструкции без ремонта на ближайший век, думаю, хватит.
  8. По моему ТС просто развлекается публикуя здесь полное отсутствие здравого смысла.
  9. Есть железное правило, если не знаешь, что сказать - ДА или -НЕТ Всегда говори НЕТ останешься при своих, а не в минусе.
  10. Можно изготовить раствор на основе извести с тертым газобетоном, клеем, перлитом, речным песком и цементом. Себестоимость низкая, адгезия высокая. Спустя год нет ни одного участка с отслоением (хотя заливало водой сильно)
  11. Рельс не подойдет. Советуйтесь с профессионалом-конструктором
  12. Оставить, плевать ненадо. С перлитом все будет в порядке. Ну если сильно одолевают сомнения можно сделать так: фасовать перлит в небольшие полиэтиленовые пакеты, запаивать и в стену.
  13. Очевидно Вы читаете посты не полностью, а выборочно.
  14. Подырявили мембрану сознательно ( в отверстиях присутствует силикат натрия) да и главной изоляцией является сам бетон в составе которого есть пенетраты. Поскольку монолит заливался частями особое внимание было уделено стыкам (швам) между заливками. Это единственное место возможных протечек. Мембрана первый рубеж защиты от воды пока отсутствует запланированная отмостка дома, но главная ее задача обеспечить воздушную прослойку для выхода влаги попадающей к ЭППС. Битумный праймер-мастика второй рубеж для защиты бетона от воды. Хорошо закрепленная мембрана сможет выдержать пучение грунтов этой зимой (отмостка будет выполняться только весной после просадки грунта). Пространство вокруг дома практически все закрыто утепленной брусчаткой
  15. Утепление стен. 1. Поклейка ЭППС. В битумный праймер добавили цемент, песок, силикат натрия, воду и клей для плитки получился отличный клей для ЭППС. 2. Монтаж на нижнюю часть стены и плиты полиэтиленовой пленки плотностью 200 на скотч ( в последствии после монтажа мембраны он отойдет от ЭППС и создаст возможность вывода влаги от утеплителя). 3. Монтаж мембраны.
  16. Поехали дальше. Дав бетону несколько дней собраться с мыслями начали работы по гидроизоляции. 1.Сначала удалили наплывы бетона на стыке панели и стены. 2.После чего нанесли на стык (холодный шов) двухкомпонентную цементную изоляцию. 3.Обработали всю площадь стены 50% раствором жидкого стекла. 4.Нанесли обмазочную битумную мастику-праймер.
  17. ..... Просто соотношения неравные. Если сравнивать уровень комфортности и энергоэффективности стандартных немецких домов и пассивных, в той же Германии, и наших "дырявых" хрущевок (кстати в Европе практически нет центрального отопления с ТЕЦами), состояние инженерной инфраструктуры (гнилые трубы, устаревшие технологии) - то сравнение будет несоизмеримым. К сожалению, не в нашу пользу.... ------------ В Дании очень уважают идею центрального отопления, и говорят о том, что Украине сказочно повезло иметь в наследство от СССР такую развитую систему центрального отопления. Ведь ее только необходимо модернизировать и это будет оптимально для городов. Это правда... , но только не в нашей стране. Столько усилий приложили по перекройке всего наследия, столько стараний чтобы присосаться и получать не заработанную выгоду (чего только стоит идея взымать плату с населения за бесплатную горячую воду,получаемую как побочный продукт охлаждения ТЭЦ) и так куда ни глянь...
  18. Виной всему скорее всего (ИМХО) банальная лень человека за которого все всегда делал кто-то другой. Я бы просто прекратил любые разговоры на эту тему и на тему женитьбы тоже... , а там гляди все и прояснилось бы.
  19. Изготовление из бетона наружного слоя стен цокольного этажа.
×
×
  • Створити...